Projection Pursuit for Exploratory Supervised Classification
نویسندگان
چکیده
In high-dimensional data, one often seeks a few interesting low-dimensional projections that reveal important features of the data. Projection pursuit is a procedure for searching high-dimensional data for interesting low-dimensional projections via the optimization of a criterion function called the projection pursuit index. Very few projection pursuit indices incorporate class or group information in the calculation. Hence, they cannot be adequately applied in supervised classification problems to provide low-dimensional projections revealing class differences in the data . We introduce new indices derived from linear discriminant analysis that can be used for exploratory supervised classification.
منابع مشابه
On the Use of Projection Pursuit Constraints for Training Neural Networks
\Ve present a novel classifica t.ioll and regression met.hod that combines exploratory projection pursuit. (unsupervised traiuing) with projection pursuit. regression (supervised t.raining), t.o yield a. nev,,' family of cost./complexity penalLy terms . Some improved generalization properties are demonstrat.ed on real \vorld problems.
متن کاملCombining Exploratory Projection Pursuit and Projection Pursuit Regression with Application to Neural Networks
Parameter estimation becomes difficult in high-dimensional spaces due to the increasing sparseness of the data. Therefore, when a low-dimensional representation is embedded in the data, dimensionality reduction methods become useful. One such method-projection pursuit regression (Friedman and Stuetzle 1981 (PPR)-is capable of performing dimensionality reduction by composition, namely, it constr...
متن کاملانجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی
Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...
متن کاملA Note on Projection Pursuit
I provide a historic review of the forward and backward projection pursuit algorithms, previously thought to be equivalent, and point out an important difference between the two. In doing so, I correct a small error in the original exploratory projection pursuit paper (Friedman 1987). The implication of the difference is briefly discussed in the context of an application in which projection pur...
متن کاملLocalized Exploratory Projection Pursuit
Based on CART, we introduce a recursive partitioning method for high dimensional space which partitions the data using low dimensional features. The low dimensional features are extracted via an exploratory projection pursuit (EPP) method, localized to each node in the tree. In addition, we present an exploratory splitting rule that is potentially less biased to the training data. This leads to...
متن کامل